9.21
(b)

Solution. Using Euler’s relation, we can write
z(t) = (e‘” — %e*(575j)t + %e(5+5j)t)u(t).
Then the Laplace transform of z(t) can be expressed as

X(s) = / e~y (t)dt — %/ e~ (5=500ty(¢) dt + %/ e~ (5590t (t) dt.

Each of these integrals represents a Laplace transform of the type encountered in Example 9.1. It
follows that

1
ettu(t) & L Re{s} > —4,
s
e~ (5=5)ty (1) & _ Re{s} > —5
s—5+5j5 ’
e~ (5+5)ty (¢) & _ Re{s} > —5
s—5—5j '

For all three Laplace transforms to converge simultaneously, we must have Re{s} > —4.
Consequently, the Laplace transform of z(t) is

1 J J
X(s) = - R 4,
)= 31 2=5+5) T 25=5-5))’ els}>

(1)
Solution.

z(t) = 6(t) + u(t) & X(s)=1+ %, Re{s} > 0.

\)
Solution. Note that §(3t) + u(3t) = §(t) + u(t). Therefore, the Laplace transform is the same as
the result of the previous part.

9.22
(e)

Solution. Let

B s+1 _ 2 1
245546 s+3 s+2

X(s)

From the given ROC, we know that z(¢) must be a two-sided signal. Therefore,



9.23
The four pole-zero plots shown may have the following possible ROCs:

+ Plot 1: Re{s} < —2or —2 < Re{s} <2o0r2 < Re{s}.

+ Plot 2: Re{s} < —2 or —2 < Re{s}.

« Plot3: Re{s} < 2or2 < Re{s}.

+ Plot 4: The entire s-plane.

Let R denote the ROC of the Laplace transform X (s) of the signal z(t).

(1)

Solution. From table 9.1, we know that
£
z(t)e 3t «+— X (s +3).

The ROC R, of this new Laplace transform is R shifted to the left by 3. Since z(t)e =3¢ is
absolutely integrable, R, must contain the jw axis.

« For plot 1, this is possible only if R was 2 < Re{s}.
« For plot 2, this is possible only if R was —2 < Re{s}.
« For plot 3, this is possible only if R was 2 < Re{s}.

« For plot 4, R is the entire s-plane.

9.25
()

Solution. Let o and ( denote the pole and zero of X (s), respectively. Then

w2+[82

I ()l = My S5,

as shown in the figure below.

X(jw)

9.26

Solution. From table 9.1, we know that



—5s
Y(S) = €_2SX1 (8) . 6_3SX2(—3> = 6-}-5——32

9.31
(a)

Solution. By taking the Laplace transform and simplifying, we obtain

1

H(s) = 53——>-

The pole-zero plot of H(s) is shown in the figure below.

Tm

(b)
Solution. The partial fraction expansion of H(s) is
1 1

A =30 =5 ~ 36+

1. If the system is stable, then the ROC has to be —1 < Re{s} < 2. Therefore,

h(t) = —%e%u(—t) — e tu(t).

2. If the system is causal, then the ROC has to be 2 < Re{s}. Therefore,

h(t) = %e%u(t) _ %e’tu(t).

3. If the system is neither stable nor causal, then the ROC has to be Re{s} < —1. Therefore,

9.35
(a)

Solution. Let w(t) denote the signal represented by the bottom-middle node. Then the diagram
shows that



d2w(t)

a2 +2 i w(t) = z(t),
d?w(t)  dw(t)
Hence
Hs) = Y(s) B 11/1//((?) B $2—s—6
X(s) v)l(/<(3)) 82425+ 1

Taking the inverse Laplace transform, we obtain

dy(t) _,dy(t
dt? dt

+y(t) =

(b)

Solution. From the previous result, the two poles of the system are at —1. Since the system is
causal, the ROC is —1 < Re{s} and hence includes the jw-axis. Therefore, the system is stable.

9.40

Taking the unilateral Laplace transform of the equation, we obtain
s°Y(s) — s*y(07) — sy’ (07) =y (07) +
652Y(s) — 6sy(07) — 69/ (07) + 11sY(s) — 11y(07) + 6Y(s) = X (s).

(a)
Solution. For the zero-state response, we have
1
s3Y(s) + 652Y(s) + 11sY(s) + 6Y(s) = X (s) = —
Therefore,
1 1 1 1 1

I = P 162+ 11576) 2642 2643 66+1) 6era)

Taking the inverse unilateral Laplace transform, we obtain

A S TP 1w
y(t) = 5¢ u(t) 5¢ u(t) 5e u(t)—|—66 u(t).

(b)
Solution. For the zero-input response, with the given initial condition, we can obtain

45546 1
346524+ 11s+6 s+1°

Y(s)

Taking the inverse unilateral Laplace transform, we obtain



()

Solution. The total response is the sum of the zero-state and zero-input responses. Therefore,

1 1 5 1
y(t) = (56_2t — 56_3t + ge_t + 66_4t)u(t).
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