
9.21
(b)

Solution. Using Euler’s relation, we can write

𝑥(𝑡) = (𝑒−4𝑡 − 𝑗
2
𝑒−(5−5𝑗)𝑡 + 𝑗

2
𝑒−(5+5𝑗)𝑡)𝑢(𝑡).

Then the Laplace transform of 𝑥(𝑡) can be expressed as

𝑋(𝑠) = ∫
∞

−∞
𝑒−4𝑡𝑢(𝑡) d𝑡 − 𝑗

2
∫

∞

−∞
𝑒−(5−5𝑗)𝑡𝑢(𝑡) d𝑡 + 𝑗

2
∫

∞

−∞
𝑒−(5+5𝑗)𝑡𝑢(𝑡) d𝑡.

Each of these integrals represents a Laplace transform of the type encountered in Example 9.1. It
follows that

𝑒4𝑡𝑢(𝑡) ⟷
ℒ 1

𝑠 + 4
, ℛℯ{𝑠} > −4,

𝑒−(5−5𝑗)𝑡𝑢(𝑡) ⟷
ℒ 1

𝑠 − 5 + 5𝑗
, ℛℯ{𝑠} > −5,

𝑒−(5+5𝑗)𝑡𝑢(𝑡) ⟷
ℒ 1

𝑠 − 5 − 5𝑗
, ℛℯ{𝑠} > −5.

For all three Laplace transforms to converge simultaneously, we must have ℛℯ{𝑠} > −4.
Consequently, the Laplace transform of 𝑥(𝑡) is

𝑋(𝑠) = 1
𝑠 + 4

− 𝑗
2(𝑠 − 5 + 5𝑗)

+ 𝑗
2(𝑠 − 5 − 5𝑗)

, ℛℯ{𝑠} > −4.

(i)

Solution.

𝑥(𝑡) = 𝛿(𝑡) + 𝑢(𝑡) ⟷
ℒ

𝑋(𝑠) = 1 + 1
𝑠
, ℛℯ{𝑠} > 0.

(j)

Solution. Note that 𝛿(3𝑡) + 𝑢(3𝑡) = 𝛿(𝑡) + 𝑢(𝑡). Therefore, the Laplace transform is the same as
the result of the previous part.

9.22
(e)

Solution. Let

𝑋(𝑠) = 𝑠 + 1
𝑠2 + 5𝑠 + 6

= 2
𝑠 + 3

− 1
𝑠 + 2

.

From the given ROC, we know that 𝑥(𝑡) must be a two-sided signal. Therefore,



𝑥(𝑡) = 2𝑒−3𝑡𝑢(𝑡) + 𝑒−2𝑡𝑢(−𝑡), ℛℯ{𝑠} > −2.

9.23
The four pole-zero plots shown may have the following possible ROCs:

• Plot 1: ℛℯ{𝑠} < −2 or −2 < ℛℯ{𝑠} < 2 or 2 < ℛℯ{𝑠}.

• Plot 2: ℛℯ{𝑠} < −2 or −2 < ℛℯ{𝑠}.

• Plot 3: ℛℯ{𝑠} < 2 or 2 < ℛℯ{𝑠}.

• Plot 4: The entire 𝑠-plane.

Let 𝑅 denote the ROC of the Laplace transform 𝑋(𝑠) of the signal 𝑥(𝑡).

(1)

Solution. From table 9.1, we know that

𝑥(𝑡)𝑒−3𝑡 ⟷
ℒ

𝑋(𝑠 + 3).

The ROC 𝑅1 of this new Laplace transform is 𝑅 shifted to the left by 3. Since 𝑥(𝑡)𝑒−3𝑡 is
absolutely integrable, 𝑅1 must contain the 𝑗𝜔 axis.

• For plot 1, this is possible only if 𝑅 was 2 < ℛℯ{𝑠}.

• For plot 2, this is possible only if 𝑅 was −2 < ℛℯ{𝑠}.

• For plot 3, this is possible only if 𝑅 was 2 < ℛℯ{𝑠}.

• For plot 4, 𝑅 is the entire 𝑠-plane.

9.25
(c)

Solution. Let 𝛼 and 𝛽 denote the pole and zero of 𝑋(𝑠), respectively. Then

‖𝑋(𝑗𝜔)‖ = 𝑀√𝜔2 + 𝛽2
𝜔2 + 𝛼2

,

as shown in the figure below.

𝜔

𝑋(𝑗𝜔)

0

9.26
Solution. From table 9.1, we know that



𝑌 (𝑠) = 𝑒−2𝑠𝑋1(𝑠) ⋅ 𝑒−3𝑠𝑋2(−𝑠) =
𝑒−5𝑠

6 + 𝑠 − 𝑠2
.

9.31
(a)

Solution. By taking the Laplace transform and simplifying, we obtain

𝐻(𝑠) = 1
𝑠2 − 𝑠 − 2

.

The pole-zero plot of 𝐻(𝑠) is shown in the figure below.

ℛℯ

ℐ𝓂

−1 2

(b)

Solution. The partial fraction expansion of 𝐻(𝑠) is

𝐻(𝑠) = 1
3(𝑠 − 2)

− 1
3(𝑠 + 1)

.

1. If the system is stable, then the ROC has to be −1 < ℛℯ{𝑠} < 2. Therefore,

ℎ(𝑡) = −1
3
𝑒2𝑡𝑢(−𝑡) − 1

3
𝑒−𝑡𝑢(𝑡).

2. If the system is causal, then the ROC has to be 2 < ℛℯ{𝑠}. Therefore,

ℎ(𝑡) = 1
3
𝑒2𝑡𝑢(𝑡) − 1

3
𝑒−𝑡𝑢(𝑡).

3. If the system is neither stable nor causal, then the ROC has to be ℛℯ{𝑠} < −1. Therefore,

ℎ(𝑡) = −1
3
𝑒2𝑡𝑢(−𝑡) + 1

3
𝑒−𝑡𝑢(−𝑡).

9.35
(a)

Solution. Let 𝑤(𝑡) denote the signal represented by the bottom-middle node. Then the diagram
shows that



d2𝑤(𝑡)
d𝑡2

+ 2d𝑤(𝑡)
d𝑡

+ 𝑤(𝑡) = 𝑥(𝑡),

d2𝑤(𝑡)
d𝑡2

− d𝑤(𝑡)
d𝑡

− 6𝑤(𝑡) = 𝑦(𝑡).

Hence

𝐻(𝑠) = 𝑌 (𝑠)
𝑋(𝑠)

=
𝑌 (𝑠)
𝑊(𝑠)
𝑋(𝑠)
𝑊(𝑠)

= 𝑠2 − 𝑠 − 6
𝑠2 + 2𝑠 + 1

.

Taking the inverse Laplace transform, we obtain

d2𝑦(𝑡)
d𝑡2

+ 2d𝑦(𝑡)
d𝑡

+ 𝑦(𝑡) = d2𝑥(𝑡)
d𝑡2

− d𝑥(𝑡)
d𝑡

− 6𝑥(𝑡).

(b)

Solution. From the previous result, the two poles of the system are at −1. Since the system is
causal, the ROC is −1 < ℛℯ{𝑠} and hence includes the 𝑗𝜔-axis. Therefore, the system is stable.

9.40
Taking the unilateral Laplace transform of the equation, we obtain

𝑠3𝒴(𝑠) − 𝑠2𝑦(0−) − 𝑠𝑦′(0−) − 𝑦″(0−) +

6𝑠2𝒴(𝑠) − 6𝑠𝑦(0−) − 6𝑦′(0−) + 11𝑠𝒴(𝑠) − 11𝑦(0−) + 6𝒴(𝑠) = 𝒳(𝑠).

(a)

Solution. For the zero-state response, we have

𝑠3𝒴(𝑠) + 6𝑠2𝒴(𝑠) + 11𝑠𝒴(𝑠) + 6𝒴(𝑠) = 𝒳(𝑠) = 1
𝑠 + 4

.

Therefore,

𝒴(𝑠) = 1
(𝑠 + 4)(𝑠3 + 6𝑠2 + 11𝑠 + 6)

= 1
2(𝑠 + 2)

− 1
2(𝑠 + 3)

− 1
6(𝑠 + 1)

+ 1
6(𝑠 + 4)

.

Taking the inverse unilateral Laplace transform, we obtain

𝑦(𝑡) = 1
2
𝑒−2𝑡𝑢(𝑡) − 1

2
𝑒−3𝑡𝑢(𝑡) − 1

6
𝑒−𝑡𝑢(𝑡) + 1

6
𝑒−4𝑡𝑢(𝑡).

(b)

Solution. For the zero-input response, with the given initial condition, we can obtain

𝒴(𝑠) = 𝑠2 + 5𝑠 + 6
𝑠3 + 6𝑠2 + 11𝑠 + 6

= 1
𝑠 + 1

.

Taking the inverse unilateral Laplace transform, we obtain



𝑦(𝑡) = 𝑒−𝑡𝑢(𝑡).

(c)

Solution. The total response is the sum of the zero-state and zero-input responses. Therefore,

𝑦(𝑡) = (1
2
𝑒−2𝑡 − 1

2
𝑒−3𝑡 + 5

6
𝑒−𝑡 + 1

6
𝑒−4𝑡)𝑢(𝑡).
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